Synthesis and electrokinetics of cationic spherical nanoparticles in salt-free non-polar media.
نویسندگان
چکیده
Cationic diblock copolymer nanoparticles have been prepared in n-dodecane via polymerization-induced self-assembly (PISA). A previously reported poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) PISA formulation (Chem. Sci. 2016, 7, 5078-5090) was modified by statistically copolymerizing an oil-soluble cationic methacrylic monomer, (2-(methacryloyloxy)ethyl)trimethylammonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate, with either SMA or BzMA, to produce either charged shell or charged core nanoparticles. The electrokinetics were studied as a function of many variables (function of volume function, particle size, solvent viscosity, and number of ions per chain). These data are consistent with electrophoresis controlled by counterion condensation, which is typically observed in salt-free media. However, there are several interesting and unexpected features of interest. In particular, charged shell nanoparticles have a lower electrophoretic mobility than the equivalent charged core nanoparticles, and the magnitude of the electrophoretic mobility increases as the fraction of cationic stabilizer chains in the shell layer is reduced. These results show that cationic PSMA-PBzMA spheres provide an interesting new example of electrophoretic nanoparticles in non-polar solvents. Moreover, they should provide an ideal model system to evaluate new electrokinetic theories.
منابع مشابه
Synthesis and electrokinetics of cationic spherical nanoparticles in salt-free non-polar media† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc03334f. Data are also available from the Zenodo repository at DOI: 10.5281/zenodo.1066849.
متن کامل
Surface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis
Herein, magnetic cobalt ferrite nanoparticles (CFNPs) was synthesized and its surface was modified by cationic surfactant (cetyltrimethyl ammonium bromide: CTAB) and its potential to selective removal of dye from multicomponent (ternary) system was investigated. Direct red 31 (DR31), Direct green 6 (DG6) and Direct red 23 (DR23) were used as a model dyes. The characteristics of the synthesi...
متن کاملAmino Acid Coated Silver Nanoparticles: A Green Catalyst for Methylene Blue Reduction
Highly stable and homogeneously dispersed amino acid coated silver nanoparticles (ANP) of ≈ 10 nm diameter, ranging from 420 to 430 nm are prepared on AgNO3 solution addition to gum of Azadirachta indica solution at 373.15 K. The amino acids were selected based on their polarity. The synthesized nanoparticles were characterized by UV-Vis, FTIR spectroscopy, HR-TEM, XRD, SEM and 1H-NMR. The coat...
متن کاملNb2O5 Nanoparticles Synthesis by Chemical Surfactant-Free Methods: ltrasonic Assisted Approach
In this study, spherical Nb2O5 nanoparticles were synthesized by a novel chemical method as a simple, robust, surfactant-free, non-toxic and widely applicable approach. In order to investigate the effect of initial concentration on particle sizes, nanoparticles with different initial concentration were synthesized. Ultrasonic assisted method was applied and the effects of ultrasonic treat...
متن کاملParameters Affecting the Biosynthesis of Gold Nanoparticles Using the Aquatic Extract of Scrophularia striata and their Antibacterial Properties
Green synthesis is a simple, low-cost, non-toxic, environmentally friendly and efficient approach touse. Leaf extract of plants rich in polyphenols, such as flavonoids, is a powerful agent in reducing thesynthesis of gold nanoparticles. The purpose of this study is to investigate the parameters affecting thebiosynthesis of gold nanoparticles using the aqueous extract of Scroph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical science
دوره 9 4 شماره
صفحات -
تاریخ انتشار 2018